CODE

UIARSS

Hathora

Whitepaper

13 October, 2025

Hachora

Presented to: Presented by:
Harsh Pandey Carlind
Gabi Weinberg

Hathora — Code Wizards

Table of Contents

T EXECULIVE SUMMANYceeniieiiieiiiieeeenereneeeeeeeeeaeesennssensesesnssenssssnsssensassnsassnnans 4
2 INtrOdUCTHION......ccieeeeiiiieeiecceerreeieceeereenneeeeeeeennnesseaseenssssssssesnnsssssssennnsssssssannns 5
3 Hathora's APProach.......... it erreeeeeea e e e enne e e esneeessennaesnnnes 6
4 Our approach to testingcceuu i e een e e e ea e e eennas 7
5 Benefits/USE CASESccceireeueiiiiiieiiiiieiitetneieetteenneeeeteennnsssessseennsssssssesnnssssssnes 9
6 RisksS/CoNSIderationscccoiiiieueiiiiiiimnneiinnieennreeeeeeeenesseeseeeennsssesseennnsnncns 11
7 Fleets: Enterprise differentiationccoouueiiiiniiiiiiicccreeereeee e, 13
8 Observability and monitoring capabilitiesccovveneiiiiniiiiiniiricirreee, 15
9 SDK integration and APl eCOSYStemccouuiiiieniiiiiniiiieecereneeeeeneeeeenaeeeenns 17
10 CI/CD integration and development workflowc.ccccceriiirmriiiinirnnncciennnennee. 19
11 Security considerations for development teams..........cccccoivvuiiiiiniiriencennenn. 20
7 0 o= (PPN 22
T EVIAENCE...... o ieeeeieieeiieeeerettteeeeeetetneeeeeeeeeennsssesseeenssssssssesnnsssssssesnnsssssssesnnnes 24
T4 CONCIUSIONceeeeiiiiiiicceiieeiieeeeeteeneeeeeeeeennneeeseeenssssssssesnnsssssssesnnsssssssssnnnes 25
T5 REFEIENCES......ceeeeieiieieeeceireeieeeeeteeeeeeeereeenneeeeeeeennnsssessseennsssssssesnnsssssssssnnnes 26

2

aZis
AR>S o

Confidentiality Statement

This document is confidential and intended solely for the use of the individual or entity to
whom it is addressed. If you are not the intended recipient, please notify us immediately
and delete this document. This document contains proprietary and confidential
information and may not be disclosed, reproduced, or distributed to any third party
without the prior written consent of Code Wizards.

All prices and fees mentioned in this document are exclusive of VAT, unless otherwise
stated. The client shall be responsible for paying all taxes, duties, and levies that may be
applicable on the services provided by Code Wizards, including VAT.

The information contained in this document is provided "as is" without any warranty,
express or implied, as to the accuracy or completeness of the information or the
suitability of the services proposed herein. Code Wizards shall not be liable for any
damages whatsoever arising out of or in connection with the use of this proposal
document or the services proposed herein.

This document and any accompanying documentation are the property of Code Wizards
and may not be used, copied, or distributed for any purpose other than to evaluate the
services proposed herein. By accepting this document, the client agrees to be bound by
the terms and conditions set forth herein.

Code Wizards reserves the right to modify or withdraw this document at any time
without prior notice. Any modifications or changes to this proposal document shall be
communicated to the client in writing.

3 G0DE

WZRDS 5

Hathora — Code Wizards

1 Executive summary

When developers evaluate multiplayer infrastructure there are a large number of options.
Hathora presents an approach that differs from other providers often designed for broad
infrastructure management. The platform is built specifically for game server hosting,
placing an emphasis on developer experience and operational simplicity rather than
extensive infrastructure customisation. It runs on external cloud providers and bare metal,
with orchestration abstracted behind a rooms model that aligns with common multiplayer
patterns.

The evaluation demonstrated a direct process for moving from initial setup to a functional
multiplayer server deployment. The platform is designed to be accessible, including for
developers who do not specialise in infrastructure tasks. At the same time, teams should
note current limitations: they have launched titles with ~100,000 CCU across platforms,
but no ultra CCU launches at the time of writing, limited deep system tuning and custom
networking or storage controls.

For developers considering alternatives to highly configurable game server orchestration
systems or self managed cloud infrastructure, Hathora provides a managed solution
focused on a common developer workflow. The hybrid model, which combines a bare
metal baseline with cloud overflow, can reduce costs when baseline utilisation stays high
and bursts are short, with pricing based on active vCPUs and outbound bandwidth.
Security protections apply across both capacity types and are managed automatically
within Hathora.

While its feature set may not be optimal for every project, it is intended to streamline the
operational processes for a wide array of multiplayer games, making it a strong choice for
teams looking to reduce time to market with its solid baseline of features. While not
proven at massive scale Hathora's features offer a kickstart to any team wanting to host
dedicated game servers and is a solid contender in the orchestration and scaling market.

Executive summary - 4 <<>>8
WARS uzs

Hathora — Code Wizards

2 Introduction

Multiplayer game development faces a persistent infrastructure challenge. Developers
prefer focusing on gameplay, networking code, and player experience rather than
container orchestration, load balancers, and scalers.

Game server provision platforms often require developers to become part-time DevOps
engineers just to deploy basic multiplayer functionality. They favour tuning and
customisation over simplicity and ease of use.

For those games studios without DevOps skills this can mean time lost spent configuring
services, debugging networking issues caused by firewall misconfigurations, or facing
unexpected server costs due to misconfigured scaling. These infrastructure problems
divert attention from actual game development priorities.

Hathora gained attention by promising to address this specific pain point. Rather than
offering a cloud or bare metal specific solution with high customisability, they built a
solution specifically for game developers which is easy to use. This evaluation aims to
determine whether this game-focused approach delivers meaningful benefits or simply
represents clever marketing around familiar hosting complexities.

Introduction — 5 <<>>$
UZRS S5

Hathora — Code Wizards

3 Hathora’s Approach

Hathora centres on "rooms," essentially game server instances that scale in line with
demand when players need multiplayer sessions. This design choice aligns well with
common multiplayer game patterns: players join lobbies, get matched or create rooms,
and connect to dedicated server instances for their sessions.

The underlying technology uses Docker containers and orchestration, but this complexity
remains highly abstracted. Developers provide a Dockerfile, configure basic settings, and
Hathora handles the orchestration. Containers run across multiple regions, scale
automatically based on demand, and terminate when rooms become empty.

The key distinction lies in the game-specific workflow focus. Rather than configuring
generic compute instances, developers configure game rooms. Instead of managing load
balancers, they manage regional distribution to optimise player latency. The abstractions
are designed to simplify the challenges of multiplayer game development.

Hathora's Approach - 6 b
7255 &

Hathora — Code Wizards

4 Our approach to testing

We conducted comprehensive testing across various deployment scenarios to evaluate
Hathora's performance in real development workflows. This included deploying an Unreal
Engine Lyra server, a JavaScript-based multiplayer game with custom lobby service
integration, and experimenting with Unity SDK client integration.

[XXX XY XX

Our objective was to validate developer experience claims through practical testing. We
examined whether deployment is simplified, as advertised, and how the platform
manages common development challenges, such as frequent redeployments, debugging
connection issues, and monitoring server performance under load. Testing spanned
multiple regions, simulated varying player loads, and involved deliberate attempts to
identify failure modes.

We maintained a sceptical perspective, focusing on thorough documentation review, edge
case testing, and cost comparisons with equivalent infrastructure alternatives. With any
claimed time and complexity savings requiring substantial proof to be included.

Our approach to testing - 7
CODE PP g

aZis
AR>S i

Hathora — Code Wizards

However some elements are deliberately out of scope as they're hard to repeat and
validate independently. These are largely in the areas of proactive and reactive 24x7x365
support from Hathora teams and validating behaviour of Hathora with poor game server
implementations or silent crashes.

Our approach to testing — 8 <<>>£
UZRS s

Hathora — Code Wizards

5 Benefits/Use cases

The deployment experience exceeded expectations. Initial server deployment took about
10 minutes with a container ready to go, or roughly 1 to 2 hours to build and containerise
a sample from scratch. Hathora tell us that they also offer engineering support for the
onboarding and initial setup. On competitor platforms, setting up an equivalent multiplayer
server typically takes 2 to 4 hours just for networking configuration.

unity-test (® Deploy new version) | ¥ London S | ® createroom)

= s Look up a room Look up a process
@& Deployments Enter Roomid nd — Enter Processid

3 Settings

Application info

All regions ° Al statuses

Recent processes

Latest deployment
() 55ecfd14-cbc1-4 Aug 19, 2025 3:41 PM ® S (§) muttiplayer-gam 2% London

®
(§) b225cfca-fico-de. Aug 19, 2025 3:37 PM) (§) muttiplayer-gam. 2 London
@ multiplayer-game-sample
(§) 6ee2df62-88d4-. Aug 19, 2025 3:34 PM (§) muttiplayer-gam. 2 London
(5) bbco75ed-2316-. Aug 19, 2025 3:33 PM (S) muttiplayer-gam 2 London
(5) 4d34e24b-0bd6- Aug 19, 2025 3:31 PM (§) multiplayer-gam 2 London
(5) b6470120-8b51-. Aug 19, 2025 3:29 PM (§) multiplayer-gam 2 London
(§) 3c219ceb-abdd- Aug 19, 2025 3:27 PM (§) multiplayer-gam 2% London
(§) 32676910-e14a-4 Aug 19, 2025 3:26 PM @ 8 (§) multiplayer-gam 2% London

(§) 1772e03d-924a- Aug 19, 2025 3:25 PM) (§) multiplayer-gam 2 London

(5) 39eeeca9-7coe- Aug 19, 2025 11:50 AM S 2= Seattle >
For teams new to containerisation or facing deployment challenges, Hathora offers direct
onboarding support through scheduled calls with their technical team. These sessions,
typically lasting around 45 minutes, provide hands-on assistance with containerising game
server builds and walking through the deployment process. This personalised support
significantly reduces the learning curve for teams unfamiliar with Docker workflows or
multiplayer infrastructure deployment.

For production deployments requiring guaranteed response times, Hathora provides a
24/7 support package with a 30-minute SLA for engineer response. This level of support
addresses the critical need for rapid incident resolution in live multiplayer games.
Additionally, the platform maintains a public server status tracker (https://
hathora.instatus.com/) that provides real-time visibility into service health across all
regions, enabling teams to quickly distinguish between game-specific issues and platform-
wide incidents.

The "room" abstraction functions effectively. Developers focus on game sessions rather
than server instances and load balancing. Testing scenarios are intuitive: spin up a room to

Benefits/Use cases — 9 <<>>£
WARS uzs

https://hathora.instatus.com/)

Hathora — Code Wizards

test new game features, then use room IDs to track down specific sessions when players
report issues. This aligns naturally with existing multiplayer architecture.

Regional deployment simplifies typical complexities. Competitors require setting up and
managing their network configurations and complex networking for multi-region
deployment. Hathora automates this: developers select desired regions, and rooms
provision in optimal locations for each player group.

Network performance across regions consistently meets gaming requirements. Testing
revealed latency under 50ms for in-region connections (i.e., nearby players connecting to
their local region) with minimal packet loss, suitable for most multiplayer genres including
competitive titles. The platform's regional distribution effectively optimises player routing,
though teams should validate performance for latency-critical applications requiring
sub-20ms response times.

Scaling performs as expected from modern infrastructure. Player demand spikes trigger
new servers within thirty seconds during testing. Demand reduction leads to automatic
resource cleanup without incurring idle capacity costs. Major capacity increases still
require the usual 2-3 minute delay, but normal fluctuations feel responsive.

The logging and monitoring approach alleviates operational burdens. Game server logs
capture automatically and remain accessible through the web console and API. No
complex log management configuration or aggregation setup is needed. You can access
logs for any running or recent server. For teams without dedicated DevOps resources,
this significantly reduces operational overhead.

For deeper troubleshooting needs, SSH access is available when required, providing
developers with direct server access for debugging complex issues. The setup process
involves SSH key configuration, port management, and Dockerfile modifications, which
maintains security while ensuring access is intentional and properly configured. This
capability bridges the gap between simplified operations and detailed debugging when
necessary.

Incident response integration operates through programmatic monitoring APls that enable
external alerting systems. Teams can build custom monitoring workflows using the Fleet
and Process metrics endpoints to trigger PagerDuty or similar incident management
platforms when game-specific thresholds are breached. For example, monitoring room
creation failure rates, regional capacity exhaustion, or abnormal process termination
patterns through automated polling of GetFleetMetrics and GetProcessMetrics endpoints.
This approach allows teams to establish game-aware alerting rather than relying solely on
generic infrastructure metrics, ensuring that incidents affecting player experience receive
appropriate escalation and response.

As for support Hathora offer 24/7 365 Support with a 30 minute SLA for a engineering
response, however we did not test this feature during our review of the overall service.

Benefits/Use cases — 10 b
WARS uzs

Hathora — Code Wizards

6 Risks/Considerations

The primary concern is operational lock-in, which differs from traditional vendor lock-in.
While game server code remains portable through containerisation/Image registries,
operational knowledge and tooling become specific to Hathora. Room management,
deployment pipelines, and monitoring workflows require rebuilding if you migrate
elsewhere.

Customisation options are limited compared to self-managed infrastructure. Optimising
the underlying OS or networking stack remains impossible. However, custom monitoring
agents can be deployed within game server containers for log export to external systems
like S3, Datadog, and Honeycomb. For most games, these limitations are acceptable, but
specific performance requirements or deep system access needs may face restrictions.

Regional coverage offers good but incomplete global reach. Fourteen regions fall short
compared to major competitors' thirty-plus regions, which could be problematic for truly
global games. Additionally, tier restrictions limit access to advanced capabilities since
dedicated hardware and enhanced security features require Enterprise pricing.

Capacity and scaling characteristics are designed for cost efficiency and responsiveness.
Room termination occurs immediately when emptied, avoiding unnecessary costs, while
new room provisioning completes within 30 seconds under normal conditions. Major
capacity scaling during traffic spikes requires 2-3 minutes, though this can be mitigated
through pre-scaling configurations and cloud baseline settings. Regional capacity limits are
designed to handle typical multiplayer game loads, with overflow and multi-region
distribution capabilities for larger deployments. These scaling patterns are optimised for
most multiplayer game traffic profiles, with configuration options available for titles with
specific scaling requirements.

Hathora specifically calls out that there are additional scaling options that deal with the
different scaling strategies mentioned above, such as min cloud node scaling, which
essentially means that an event is expected to scale through bare metal capacity and you
are extending the buffer by scaling cloud capacities. As well as scaling over arching
thresholds that can be tweaked to combat and smooth out spikes in game server traffic.
The fact that these tools exist highlights the complexities of operating game servers in
today's video game market.

Cost predictability improves over competitors for typical game workloads, but the hybrid
pricing model adds complexity. Baseline capacity commitments combine with uncertain
bursting costs during traffic spikes, necessitating careful capacity planning.

A major component of any game server solution is how it handles problems outside of
normal operational hours and this could not be validated as part of this evaluation. If

Risks/Considerations — 11 <0>8

WARSS uzs

Hathora — Code Wizards

worldwide utilisation of your game requires global support then this should be agreed and
tested before choosing Hathora as a platform.

Risks/Considerations — 12 <O>£

WZRDS b

Hathora — Code Wizards

7 Fleets: Enterprise differentiation

Fleet management sets Hathora's enterprise offerings apart from basic container hosting.
Pro and Enterprise customers benefit from dedicated infrastructure across multiple cloud
providers and bare metal hosts instead of shared hardware. Hathora runs on external
cloud infrastructure and does not operate its own in-house cloud. The platform spans
multiple external providers and bare metal and can choose per region based on price,
capacity, and latency goals; in typical setups a single provider backs a region at a time,
with the ability to switch or burst when economics or capacity change.

For enterprises with existing cloud commitments, Hathora offers a Bring Your Own Cloud
service that allows deployment into customer-owned cloud tenants, enabling teams to
leverage existing volume discounts and minimum spend commitments while maintaining
Hathora's orchestration and management capabilities.

What impressed most about the fleet experience was how completely automatic it felt
from a developer perspective. Despite the underlying complexity of managing dedicated
nodes across multiple regions, the deployment process remained identical to the basic
tier. No additional configuration, fleet-specific commands, or infrastructure management
was required because rooms provisioned on our dedicated London hardware
transparently. This seamless transition from shared to dedicated infrastructure eliminates
the operational overhead typically associated with enterprise-grade hosting.

The hybrid infrastructure approach showcases innovation. Committed capacity runs on
cost-effective bare metal servers, while demand spikes automatically provision additional
capacity from cloud providers. Testing revealed seamless transitions from a developer
perspective, although the two-minute cloud scaling delay necessitates careful baseline
capacity planning.

Autoscaler configuration

T Scale up threshold (%) | Scale down threshold (%)

85

Regional compute

¥ London

The operational intelligence level impressed during evaluation. The scaler responds to
game server allocation patterns rather than simple CPU metrics, ensuring optimal
utilisation across the fleet. Server distribution occurs efficiently across regions, and
underutilised capacity is reclaimed aggressively without affecting active games.

Fleets: Enterprise differentiation — 13
CODE P VL

AR>S uzs

Hathora — Code Wizards

Monitoring and fleet management tools are tailored for game infrastructure. Instead of
generic metrics, the interface displays game-relevant data: room allocation rates, regional
utilisation patterns, and capacity planning projections. The Fleet APl supports
sophisticated automation scenarios, including pre-scaling for scheduled events and
external matchmaking system integration.

Fleet management capabilities are available across all paid plans, with only the free tier
scheduling on multitenant shared infrastructure. This accessibility ensures that teams can
benefit from dedicated fleet resources without requiring enterprise-level commitments,
though advanced features and larger capacity allocations scale with pricing tiers.

Advanced scaling controls provide fine-tuned capacity management for demanding
scenarios. Teams can configure baseline settings to pre-scale minimum nodes, particularly
valuable for known launch events where large traffic spikes are expected. The scale-up
threshold configuration (defaulting to 85% utilisation) allows adjustment of autoscaler
eagerness, letting customers choose their availability versus cost trade-off. These controls
enable sophisticated capacity planning that balances responsiveness with economic
efficiency.

Fleets: Enterprise differentiation — 14
CODE P VL

AR>S uzs

Hathora — Code Wizards

8 Observability and monitoring capabilities

Hathora's observability infrastructure addresses a critical concern for production
multiplayer deployments: maintaining visibility into distributed game server behaviour at
scale. The platform provides comprehensive monitoring without requiring teams to
Implement custom telemetry solutions.

The process identification system is particularly valuable for production troubleshooting.
External match identifiers can be linked to room creation, allowing rapid correlation
between player reports and specific server instances. This functionality integrates through
both the Hathora Console and programmatic APl access via GetRoomInfo endpoints,
simplifying the complex task of connecting external matchmaking systems to running
infrastructure.

Real-time metrics collection operates automatically across fleet utilisation, scaler
behaviour, and individual process resource consumption. For AAA operations, this granular
visibility into CPU, memory, and network utilisation patterns enables capacity planning and
performance optimisation. Metrics access is available through both dashboard interfaces
and programmatic endpoints (GetProcessMetrics, GetFleetMetrics), supporting

integration with existing monitoring workflows.

Connection count Cumulative egress bandwidth

CPU utilization 0.09 vCPU Memory utilization 130.76 MB

Enterprise-grade Prometheus integration is a significant capability for larger operations.
Prometheus Remote-Write compliance allows consolidation of Hathora infrastructure

Observability and monitoring capabilities —
CODE 15 VL

AR>S uzs

Hathora — Code Wizards

metrics with external systems like matchmakers, backend services, and player analytics
platforms. This integration enables unified observability dashboards and sophisticated
alerting workflows essential for AAA production environments.

Log management addresses another critical operational requirement. The platform
captures all stdout and stderr from running processes, providing complete visibility into
game server behaviour. Log access operates through multiple interfaces: real-time
console streaming, programmatic APl access, and CLI integration via hathora log
commands. Importantly, logs remain accessible for both active and terminated processes,
crucial for post-incident analysis.

Flexible log export capabilities support enterprise integration requirements and maintain
deployment portability through standard Docker registries and containerised workflows.
Teams can deploy custom agents within game server containers to export logs to external
systems: cloud storage (S3), observability platforms (Datadog, Honeycomb), or proprietary
logging infrastructure. Monitoring solutions implemented directly within containers remain
portable across different hosting environments, while full metrics export to customer
Prometheus instances eliminates dependency on Hathora APIs or Console for process
metrics. This approach ensures monitoring data remains accessible through existing
infrastructure while meeting compliance and operational requirements.

Data retention policies balance operational needs with cost considerations. Standard 72-
hour retention provides adequate time for routine troubleshooting and performance
analysis. Enterprise customers can negotiate extended retention periods for compliance,
long-term trend analysis, or detailed post-mortem investigations.

The developer experience prioritises usability without sacrificing functionality. Console
interfaces offer intuitive real-time monitoring, while comprehensive API access enables
automated monitoring and alerting integration. This dual approach supports both hands-on
debugging and enterprise-scale operational automation.

Observability and mc;r;itoring capabilities — <<>>£
AR>S &

Hathora — Code Wizards

9 SDK integration and APl ecosystem

Hathora's integration architecture uses progressive enhancement, allowing teams to
begin with minimal Docker-based deployment while accessing advanced capabilities as
needed. This approach is especially valuable for enterprise development, where initial
prototypes may require simple solutions, but production deployments need sophisticated
features.

The core SDK capabilities address essential multiplayer infrastructure needs without
requiring major architectural changes. Room management APIs offer programmatic
creation, discovery, and joining through standard RESTful interfaces. Teams can
Implement custom matchmaking logic while utilising Hathora's server orchestration,
which helps prevent vendor lock-in at the game logic level.

Authentication integration effectively supports various enterprise scenarios. The platform
manages anonymous players for guest access, custom authentication tokens for existing
identity systems, and third-party identity provider integration. Session management
operates seamlessly while providing secure room access controls essential for
competitive multiplayer environments.

Connection routing capabilities automate optimal server endpoint discovery based on
player location and room availability. This functionality reduces client-side networking
complexity while ensuring optimal latency distribution, which is crucial for titles with

global player bases requiring sub-100ms response times.

The matchmaker integration is particularly noteworthy for enterprise evaluation. The
platform supports both simple room-based allocation and advanced matchmaking
workflows. The CreateRoom APl enables dynamic server provisioning with regional
targeting, optimising latency through intelligent placement decisions that significantly
Impact player experience quality.

Regional optimisation leverages Hathora's Ping Service across fourteen global regions.
Matchmaking systems can measure latency using UDP, ICMP, and WebSocket protocols
before room creation, enabling data-driven server placement decisions. For global titles,
this capability directly influences player retention metrics and competitive gameplay
quality.

External matchmaker integration effectively meets enterprise architectural requirements.
Teams can link Hathora rooms with external matchmaking systems through custom
identifiers, integrating with existing backend infrastructure while utilising Hathora's server
orchestration capabilities. This flexibility is crucial for organisations with established
multiplayer technology stacks.

Testing confirmed the lobby service architecture's effectiveness through practical
Implementation. The three-tier pattern, where clients connect to lobby services that

SDK integration and API ecosystem — 17 <<>>8

WARSS uzs

Hathora — Code Wizards

provision Hathora rooms and direct player connections, maintains a clear separation
between matchmaking logic and infrastructure management. For AAA projects, where
performance consistency directly impacts player experience, dedicated hardware with
account-level isolation ensures reliability for production deployments..

Status: Connected Room: default-room Player: player_1756222855760_nzizn Players: 1/10 Ping: 17ms

17?62

Multiplayer gameplay running on Hathora infrastructure showing sub-50ms regional latency

The platform SDK is available across major development environments: Unity, Unreal
Engine, JavaScript/TypeScript, and native mobile platforms. Server-side integration
requirements are minimal, typically involving environment variable configuration and
optional APl integration for enhanced functionality. This approach reduces integration
friction while maintaining architectural flexibility.

The evaluation revealed comprehensive SDK documentation with practical integration
examples. JavaScript SDK integration required fewer than fifty lines of code for basic
room management functionality. Unity integration provided prefabs and example scenes
that significantly accelerated development. The RoomV2Api integration demonstrated
effective room lifecycle management with minimal implementation complexity, which is
critical for teams with tight development timelines.

SDK integration and API ecosystem — 18 <<>>£

WZRDS b3

Hathora — Code Wizards

10 ci/cD integration and development workflow

Hathora's CI/CD capabilities address a key challenge for development teams: integrating
multiplayer server deployments into automated workflows without major architectural
changes. The platform's approach to continuous integration is especially valuable for
teams familiar with modern development practices.

The CLI-based automation system integrates seamlessly with major Cl platforms like
TeamCity, Jenkins, and GitHub Actions through comprehensive tooling that supports
scripted deployment workflows. This compatibility is crucial, as it prevents teams from
needing to abandon existing Cl investments for platform-specific solutions.

Complete build and deployment automation is achievable through simple CLI commands.
Teams can script workflows from build creation to deployment activation, integrating with
existing development pipelines without extensive modifications. This automation is vital
for development cycles requiring frequent iteration and testing, particularly in multiplayer
games where rapid iteration directly impacts development speed.

The build system architecture supports enterprise development practices through
intelligent artifact management. Build reuse across multiple applications and
environments within Hathora eliminates duplicate uploads and enables sophisticated
environment management. The CLI integration requires minimal changes to existing
deployment scripts and reduces adoption friction, which is a critical consideration for
teams evaluating infrastructure migration costs.

Container-first development workflows receive native support through Hathora's Docker-
based deployment model. The platform automatically handles container orchestration
while allowing teams control over build and deployment automation. This balance is
essential for enterprise operations requiring both simplicity and developmental control.

Testing showed that integrating deployment pipelines requires significantly less effort
than expected. Existing Docker-based workflows translate directly to Hathora deployment
patterns, with minimal script modifications needed for automated deployment. This
compatibility reduces migration risk and the learning curve for development teams.

CI/CD integration and development
CODE workflow - 19 <<>>8

WZRDS b

Hathora — Code Wizards

11 Security considerations for development teams

Security requirements can burden game development teams, especially regarding
enterprise compliance and protection against attacks that disrupt live games. Hathora's
approach alleviates these concerns without requiring teams to become security experts.

The platform simplifies authentication using familiar methods like Google Sign-In
alongside traditional credentials. Its role-based access system benefits game teams:
admins manage billing and team oversight, developers gain deployment access without
financial controls, and QA teams have read-only visibility for testing. This separation
prevents junior developers from accidentally incurring costs or accessing production
systems inappropriately.

Invite team members

Email address Role

Member Viewer

Team members

Members Invites

Admin 11 days ago a minute ago

For APl integration, scoped tokens mitigate the risks of sharing full-access credentials
across CI/CD systems and external services. Teams can generate tokens limited to
specific operations such as builds, deployments, or monitoring, and they can revoke those
tokens instantly if compromised. This granular approach enhances security without
complicating development workflows.

DDoS protection is documented as a built-in feature, with baseline protections against
common attack patterns for all customers. Enterprise customers have access to additional
controls, such as providing trusted player IPs for rate-limiting during active attacks. We did
not attempt to validate these protections in practice.

The platform resolves "noisy neighbour" issues in shared cloud infrastructure through
complete compute isolation on higher tiers. For AAA projects, where performance
consistency directly impacts player experience, dedicated hardware with account-level

Security considerations for development
CODE teams - 20 <0>8

AR>S uzs

Hathora — Code Wizards

isolation ensures reliability for production deployments. (- ADD if it is the shared tier you
do share access to baremetal)

Builds upload over HTTPS to a signed URL and are stored in Hathora's private container
registry. This approach reduces supply chain risks without requiring teams to implement
custom security measures for their Docker workflows. Application logs are encrypted at
rest and served over TLS, meeting enterprise security requirements while maintaining
developer-friendly deployment processes.

Security Consit:z;e:]zigrls zf;x development o0t
WZRDS b

Hathora — Code Wizards

12 Costs

Cost management is essential for multiplayer games, where player count fluctuations can
lead to unexpected infrastructure costs. Hathora's hybrid approach tackles this challenge
by combining predictable base costs with dynamic scaling.

The platform integrates committed bare metal capacity with cloud overflow scaling,
balancing cost efficiency and responsiveness to player demand. In principle, this can be
cheaper than cloud-only hosting; in practice, savings depend on how efficiently the scaler
and your matchmaker ramp capacity up and down, how quickly idle capacity is reclaimed,
and your game's traffic profile. Cloud rates are highly competitive, so hybrid only beats
cloud consistently when baseline utilisation is kept high on bare metal and burst windows
are short (this specifically references cases where a game might use capacity lower than
a single bare metal machine for any point during a 24 hour period in any one region), or if
you manage to setup effective cloud scaling in Hathora that does not impact player
experience. In our tests and sample workload, the hybrid model was cheaper, but results
will vary by game and operations. Pricing is based on usage—charging for active vCPUs
and outbound bandwidth. Bare metal capacity is reserved on a monthly commitment
under the service terms, while overflow cloud usage remains metered and scales with
demand.

Cost predictability improves with the one-month commitment model for bare metal
capacity, allowing teams to adjust baseline capacity based on actual usage rather than
long-term contracts. This is a month-to-month reservation, with changes typically taking
effect at the next term; enterprise deployments often formalise baseline capacity and unit
pricing in a contract. This flexibility is particularly valuable during game lifecycle changes,
seasonal variations, or unexpected popularity shifts that can dramatically affect
infrastructure needs.

For smaller deployments, under 100 concurrent players, cost advantages are clear. Even
at larger scales, savings remain substantial, though teams should carefully model their
expected ratio of base capacity to peak demand. Starting conservatively with bare metal
allocation and expanding based on observed traffic patterns is the most effective strategy.

From a developer's perspective, the cost savings of Hathora hybrid model were evident in
practice. In our runs we compared Hathora bare metal baseline to the same workload
bursting on Hathora's cloud capacity and saw meaningful reductions on the bare-metal
portion. This comparison is within Hathora's hybrid model (bare metal baseline versus
cloud overflow), not against other providers. This aligns with Hathora's guidance that, for
the same server class, bare metal can be more than 60% cheaper than equivalent cloud
capacity. The optimal split between bare metal and cloud is game-specific: pricing is
based on active vVCPUs and outbound bandwidth, so how well the system keeps
sustained load on bare metal depends on your game's CPU-per-player,

G0DE

AR>S uzs

Hathora — Code Wizards

bandwidth-per-player, average session length, and traffic shape. Titles with steadier,
CPU-bounded rooms tend to realise a higher bare-metal share, while spiky or
bandwidth-heavy workloads will burst to cloud more often. Importantly, these cost
savings do not come at the expense of security. DDoS protections, null routing, and
network controls remain in place for both bare metal and cloud capacity.

Estimated monthly cost vs CCU (bare metal vs cloud)

—@— Bare metal
»— Cloud

1000 4

800 A

600 -

400 A

Estimated monthly cost (USD)

200 A

T T
100 200 300 400 500
Concurrent players (CCU)

Monthly cost vs CCU — Hathora bare metal vs cloud overflow

Scaling performed well under real traffic conditions. By default, it targets 75-85%
utilisation, prioritising cheaper bare metal and only bursting to cloud resources when
necessary. When demand decreased, it quickly removed underutilised cloud capacity,
with new cloud capacity coming online in just under two minutes.

You can maintain predictable costs by setting small cloud minimums in key regions for
faster cold starts and relying on bare metal for steady loads. Hathora's documentation
notes that allocations happen very quickly when capacity exists (often within ~5s), so the
platform is generally able to handle spikes of tens to a few hundred new players without
intervention; very large, sudden surges (thousands of new players in seconds) are best
handled with pre-warmed capacity, regional cloud minima, or explicit pre-scaling for
events.

G0DE

WZRDS b3

Hathora — Code Wizards

13 Evidence

Our hands-on testing of the Lyra server deployment revealed practical insights into the
platform's performance. Regional connections consistently delivered response times
under 50ms, meeting the latency requirements for most multiplayer game genres. The
deployment pipeline, from build upload to active server status, completed in under 2
minutes, which is sufficient for iterative development but slower than ideal for emergency
hotfixes.

The automatic scaling behaviour responded effectively during load testing, typically
adjusting capacity within 2-3 minutes of demand shifts. This response time suits most
game traffic patterns, although games with highly volatile player counts may face brief
capacity constraints during rapid scaling.

Architecturally, the platform's networking implementation supports highly connected
multiplayer scenarios. Server instances can connect to external services and
communicate with other game servers without restrictions, enabling sophisticated
distributed architectures. The containerised environment imposes no networking
limitations, essential for cross-server player transfers and distributed game state
management.

By default, outgoing traffic from containers is not restricted by Hathora or Docker, which
is convenient for integrations but may be a drawback for teams needing strict outbound
controls; additional filtering must be implemented inside the container or at the network
level.

The developer experience exceeded expectations in several areas. Documentation quality
Is consistently high, and support channels respond promptly to technical inquiries. Both
the CLI and web console interfaces offer adequate functionality for build management and
fleet operations. Teams familiar with containerisation can typically complete the setup
process, from account creation to first deployment, within an hour.

Automated fleet management significantly reduces operational overhead compared to
managing server infrastructure manually on traditional cloud providers. This simplification
translates to meaningful time savings for development teams, allowing them to focus on
game logic rather than infrastructure maintenance.

Performance monitoring capabilities provide visibility into server health and player
connection metrics. The logging system captures relevant game server events, though
the log format and filtering options could improve to better support debugging complex
multiplayer issues. Despite these limitations, the platform delivers on its core promise of
simplified multiplayer infrastructure management while maintaining the networking
flexibility required for advanced game architectures.

Evidence — 24 <<>>8
WARS uzs

Hathora — Code Wizards

14 Conclusion

Hathora delivers on its core promise: it makes standing up and running multiplayer servers
fast, approachable, and low friction. The hybrid cloud model, combining bare metal
baseline capacity with cloud overflow, provides cost efficiency while maintaining
responsiveness to demand spikes. The rooms model maps cleanly to how games are
built, the docs and tooling make CI/CD straightforward, and observability is practical out of
the box. In testing, we moved from zero to live servers quickly and iterated without
wrestling infrastructure.

There are real trade offs. At the time of writing, while there are no proven AAA, high CCU
or high network egress launches on the platform, Hathora has successfully demonstrated
real-world reliability and operational maturity through its existing launches, case studies of
which are listed here.

The abstraction that simplifies operations also limits deep system tuning and custom
networking, storage, or security controls. Fleet management with dedicated hardware is
available across all paid plans, while bring your own cloud (BYOC) requires the enterprise
tier, and regional coverage is good but not as broad as it could be. Teams with large scale,
strict compliance, or heavy in house Ops support may find these constraints material.

For smaller teams looking to reduce time to market or larger teams seeking a strong out
of the box solution, Hathora is a good fit. It is easy to set up, simple to use day to day, and
supports rapid iteration while maintaining reliability. Teams with extensive customisation
requirements or specialised infrastructure needs should validate their requirements
through thorough testing. If you value developer speed and clear workflows over
maximum customisation and tuning, Hathora is an excellent option.

Conclusion - 25 <0>8

WARSS uzs

https://blog.hathora.dev/

Hathora — Code Wizards

15 References

Hathora Cloud Documentation. Hathora, 2025. https://hathora.dev/docs/

How Hathora Works - Architecture and Core Concepts. Hathora, 2025. https://hathora.dev/
docs/category/how-hathora-works

Builds and Deployments Guide. Hathora, 2025. https://hathora.dev/docs/how-hathora-
works/builds-deployments

Fleets and Autoscaling. Hathora, 2025. https://hathora.dev/docs/how-hathora-works/fleets-
autoscaling

Telemetry and Monitoring. Hathora, 2025. https://hathora.dev/docs/how-hathora-works/
telemetry

Security Features. Hathora, 2025. https://hathora.dev/docs/how-hathora-works/security
Scoped Permissions Guide. Hathora, 2025. https://hathora.dev/docs/guides/scopes
CI/CD Integration Guide. Hathora, 2025. https://hathora.dev/docs/guides/ci-cd
Deployment Quick Start. Hathora, 2025. https://hathora.dev/docs/guides/deploy-hathora

Docker Configuration Guide. Hathora, 2025. https://hathora.dev/docs/guides/create-
dockerfile

Developer Token Generation. Hathora, 2025. https://hathora.dev/docs/guides/generate-
developer-token

APl Reference Documentation. Hathora, 2025. https://hathora.dev/api

Hathora GitHub Organisation. GitHub, 2025. https://github.com/hathora
TypeScript SDK. GitHub, 2025. https://github.com/hathora/cloud-sdk-typescript
Unity SDK. GitHub, 2025. https://github.com/hathora/cloud-sdk-unity

Java SDK. GitHub, 2025. https://github.com/hathora/cloud-sdk-java

Go SDK. GitHub, 2025. https://github.com/hathora/cloud-sdk-go

Godot Plugin. GitHub, 2025. https://github.com/hathora/hathora-godot-plugin
Hathora Console. Hathora, 2025. https://console.hathora.dev/

Pricing Information. Hathora, 2025. https://hathora.dev/pricing

References - 26 <O>£

UZRS b

https://hathora.dev/docs/
https://hathora.dev/docs/category/how-hathora-works
https://hathora.dev/docs/how-hathora-works/builds-deployments
https://hathora.dev/docs/how-hathora-works/fleets-autoscaling
https://hathora.dev/docs/how-hathora-works/telemetry
https://hathora.dev/docs/how-hathora-works/security
https://hathora.dev/docs/guides/scopes
https://hathora.dev/docs/guides/ci-cd
https://hathora.dev/docs/guides/deploy-hathora
https://hathora.dev/docs/guides/create-dockerfile
https://hathora.dev/docs/guides/generate-developer-token
https://hathora.dev/api
https://github.com/hathora
https://github.com/hathora/cloud-sdk-typescript
https://github.com/hathora/cloud-sdk-unity
https://github.com/hathora/cloud-sdk-java
https://github.com/hathora/cloud-sdk-go
https://github.com/hathora/hathora-godot-plugin
https://console.hathora.dev/
https://hathora.dev/pricing

V%

AR>S
GROUP

Manifesto

Don't Be a Dick - we respect and love our partners, industry colleagues, and

teammates. Everyone is Awesome - our worldview is inclusive. We are open
and welcoming. No Code Wizard is more important than another. There are no
barriers. Freedom of speech is a fundamental right for all.

We foster partnerships, not supplier/client relationships- our foundation is
mutual trust and value creation. We operate as a unified team, not individual
guns for hire - every challenge is shared and solved collectively. Easy to work
with; hard to surprise - we apply the ideal people and the right tech to each

project. Our specialist wizards are battle-hardened veterans - experienced
and unphased by even the most unexpected challenges.

Everything we do flows from this.

AR>S

	Executive summary
	Introduction
	Hathora’s Approach
	Our approach to testing
	Benefits/Use cases
	Risks/Considerations
	Fleets: Enterprise differentiation
	Observability and monitoring capabilities
	SDK integration and API ecosystem
	CI/CD integration and development workflow
	Security considerations for development teams
	Costs
	Evidence
	Conclusion
	References

